Inter-sample condition variability is a key challenge of normalising ChIP-seq data. This implementation uses either spike-in or a second factor as a control for normalisation. Input can either be from 'DiffBind' or a matrix formatted for 'DESeq2'. The output is either a 'DiffBind' object or the default 'DESeq2' output. Either can then be processed as normal. Supporting manuscript Guertin, Markowetz and Holding (2017) <doi:10.1101/182261>.
Version: | 1.0.8 |
Depends: | R (≥ 2.10), DiffBind, Rsamtools, DESeq2, lattice, stats, utils, graphics |
Published: | 2018-02-15 |
Author: | Andrew N Holding |
Maintainer: | Andrew N Holding <andrew.holding at cruk.cam.ac.uk> |
License: | CC BY 4.0 |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | Brundle results |
Reference manual: | Brundle.pdf |
Package source: | Brundle_1.0.8.tar.gz |
Windows binaries: | r-devel: Brundle_1.0.8.zip, r-release: Brundle_1.0.8.zip, r-oldrel: Brundle_1.0.8.zip |
OS X El Capitan binaries: | r-release: not available |
OS X Mavericks binaries: | r-oldrel: Brundle_1.0.7.tgz |
Old sources: | Brundle archive |
Please use the canonical form https://CRAN.R-project.org/package=Brundle to link to this page.