For each feature, a score is computed that can be useful for feature selection. Several random subsets are sampled from the input data and for each random subset, various linear models are fitted using lars method. A score is assigned to each feature based on the tendency of LASSO in including that feature in the models.Finally, the average score and the models are returned as the output. The features with relatively low scores are recommended to be ignored because they can lead to overfitting of the model to the training data. Moreover, for each random subset, the best set of features in terms of global error is returned. They are useful for applying Bolasso, the alternative feature selection method that recommends the intersection of features subsets.
Version: | 1.10 |
Depends: | lars, rms |
Published: | 2015-05-13 |
Author: | Habil Zare |
Maintainer: | Habil Zare <zare at txstate.edu> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
CRAN checks: | FeaLect results |
Reference manual: | FeaLect.pdf |
Vignettes: |
Feature seLection by computing statistical scores |
Package source: | FeaLect_1.10.tar.gz |
Windows binaries: | r-devel: FeaLect_1.10.zip, r-release: FeaLect_1.10.zip, r-oldrel: FeaLect_1.10.zip |
OS X El Capitan binaries: | r-release: FeaLect_1.10.tgz |
OS X Mavericks binaries: | r-oldrel: FeaLect_1.10.tgz |
Old sources: | FeaLect archive |
Please use the canonical form https://CRAN.R-project.org/package=FeaLect to link to this page.