Introduction
The compare()
function (or more precisely, the compare.data.frame()
function) can be used to determine and report differences between two data.frames. It was written in the spirit of replacing PROC COMPARE
from SAS.
We reexport the compare()
generic from the testthat
package to avoid namespace conflicts, and write a data.frame
S3 method to compare data.frames.
Basic examples
We first build two similar data.frames to compare.
df1 <- data.frame(id = paste0("person", 1:3),
a = c("a", "b", "c"),
b = c(1, 3, 4),
c = c("f", "e", "d"),
row.names = paste0("rn", 1:3),
stringsAsFactors = FALSE)
df2 <- data.frame(id = paste0("person", 3:1),
a = c("c", "b", "a"),
b = c(1, 3, 4),
d = paste0("rn", 1:3),
row.names = paste0("rn", c(1,3,2)),
stringsAsFactors = FALSE)
To compare these datasets, simply pass them to the compare()
function:
Compare Object
Function Call:
compare.data.frame(x = df1, y = df2)
Shared: 4 variables and 3 observations.
Not shared: 2 variables and 0 observations.
Differences found in 2/3 variables compared.
0 variables compared have non-identical attributes.
Use summary()
to get a more detailed summary
summary(compare(df1, df2))
Variables not shared
x |
c |
4 |
character |
y |
d |
4 |
character |
No other variables not compared |
Differences detected by variable
No observations not shared |
First 10 differences detected per variable
id |
id |
2 |
0 |
a |
a |
2 |
0 |
b |
b |
0 |
0 |
id |
id |
1 |
person1 |
person3 |
1 |
1 |
id |
id |
3 |
person3 |
person1 |
3 |
3 |
a |
a |
1 |
a |
c |
1 |
1 |
a |
a |
3 |
c |
a |
3 |
3 |
No non-identical attributes |
By default, the datasets are compared row-by-row. To change this, use the by=
or by.x=
and by.y=
arguments:
summary(compare(df1, df2, by = "id"))
Variables not shared
x |
c |
4 |
character |
y |
d |
4 |
character |
No other variables not compared |
Differences detected by variable
No observations not shared |
First 10 differences detected per variable
a |
a |
0 |
0 |
b |
b |
2 |
0 |
b |
b |
person1 |
1 |
4 |
1 |
3 |
b |
b |
person3 |
4 |
1 |
3 |
1 |
No non-identical attributes |
A larger example
Let’s muck up the mockstudy
data.
data(mockstudy)
mockstudy2 <- muck_up_mockstudy()
We’ve changed row order, so let’s compare by the case ID:
summary(compare(mockstudy, mockstudy2, by = "case"))
Variables not shared
x |
age |
2 |
integer |
x |
arm |
3 |
character |
x |
fu.time |
6 |
integer |
x |
fu.stat |
7 |
integer |
y |
fu_time |
11 |
integer |
y |
fu stat |
12 |
integer |
y |
Arm |
13 |
character |
Other variables not compared
race |
5 |
character |
race |
3 |
factor |
ast |
12 |
integer |
ast |
8 |
numeric |
Observations not shared
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
Differences detected by variable
sex |
sex |
1495 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
First 10 differences detected per variable (1741 differences not shown)
sex |
sex |
76170 |
Male |
Male |
26 |
20 |
sex |
sex |
76240 |
Male |
Male |
27 |
21 |
sex |
sex |
76431 |
Female |
Female |
28 |
22 |
sex |
sex |
76712 |
Male |
Male |
29 |
23 |
sex |
sex |
76780 |
Female |
Female |
30 |
24 |
sex |
sex |
77066 |
Female |
Female |
31 |
25 |
sex |
sex |
77316 |
Male |
Male |
32 |
26 |
sex |
sex |
77355 |
Male |
Male |
33 |
27 |
sex |
sex |
77591 |
Male |
Male |
34 |
28 |
sex |
sex |
77851 |
Male |
Male |
35 |
29 |
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
Non-identical attributes
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Column name comparison options
It is possible to change which column names are considered “the same variable”.
Ignoring case
For example, to ignore case in variable names (so that Arm
and arm
are considered the same), pass tol.vars = "case"
.
You can do this using comparison.control()
summary(compare(mockstudy, mockstudy2, by = "case", control = comparison.control(tol.vars = "case")))
or pass it through the ...
arguments.
summary(compare(mockstudy, mockstudy2, by = "case", tol.vars = "case"))
Variables not shared
x |
age |
2 |
integer |
x |
fu.time |
6 |
integer |
x |
fu.stat |
7 |
integer |
y |
fu_time |
11 |
integer |
y |
fu stat |
12 |
integer |
Other variables not compared
race |
5 |
character |
race |
3 |
factor |
ast |
12 |
integer |
ast |
8 |
numeric |
Observations not shared
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
Differences detected by variable
arm |
Arm |
0 |
0 |
sex |
sex |
1495 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
First 10 differences detected per variable (1741 differences not shown)
sex |
sex |
76170 |
Male |
Male |
26 |
20 |
sex |
sex |
76240 |
Male |
Male |
27 |
21 |
sex |
sex |
76431 |
Female |
Female |
28 |
22 |
sex |
sex |
76712 |
Male |
Male |
29 |
23 |
sex |
sex |
76780 |
Female |
Female |
30 |
24 |
sex |
sex |
77066 |
Female |
Female |
31 |
25 |
sex |
sex |
77316 |
Male |
Male |
32 |
26 |
sex |
sex |
77355 |
Male |
Male |
33 |
27 |
sex |
sex |
77591 |
Male |
Male |
34 |
28 |
sex |
sex |
77851 |
Male |
Male |
35 |
29 |
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
Non-identical attributes
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Treating dots and underscores the same (equivalence classes)
It is possible to treat certain characters or sets of characters as the same by passing a character vector of equivalence classes to the tol.vars=
argument.
In short, each string in the vector is split into single characters, and the resulting set of characters is replaced by the first character in the string. For example, passing c("._")
would replace all underscores with dots in the column names of both datasets. Similarly, passing c("aA", "BbCc")
would replace all instances of "A"
with "a"
and all instances of "b"
, "C"
, or "c"
with "B"
. This is one way to ignore case for certain letters. Otherwise, it’s possible to combine the equivalence classes with ignoring case, by passing (e.g.) c("._", "case")
.
Passing a single character as an element this vector will replace that character with the empty string. For example, passing c(" “,”.“) would remove all spaces and dots from the column names.
For mockstudy, let’s treat dots, underscores, and spaces as the same, and ignore case:
summary(compare(mockstudy, mockstudy2, by = "case",
tol.vars = c("._ ", "case") # dots=underscores=spaces, ignore case
))
Variables not shared
x |
age |
2 |
integer |
Other variables not compared
race |
5 |
character |
race |
3 |
factor |
ast |
12 |
integer |
ast |
8 |
numeric |
Observations not shared
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
Differences detected by variable
arm |
Arm |
0 |
0 |
sex |
sex |
1495 |
0 |
fu.time |
fu_time |
0 |
0 |
fu.stat |
fu stat |
0 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
First 10 differences detected per variable (1741 differences not shown)
sex |
sex |
76170 |
Male |
Male |
26 |
20 |
sex |
sex |
76240 |
Male |
Male |
27 |
21 |
sex |
sex |
76431 |
Female |
Female |
28 |
22 |
sex |
sex |
76712 |
Male |
Male |
29 |
23 |
sex |
sex |
76780 |
Female |
Female |
30 |
24 |
sex |
sex |
77066 |
Female |
Female |
31 |
25 |
sex |
sex |
77316 |
Male |
Male |
32 |
26 |
sex |
sex |
77355 |
Male |
Male |
33 |
27 |
sex |
sex |
77591 |
Male |
Male |
34 |
28 |
sex |
sex |
77851 |
Male |
Male |
35 |
29 |
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
Non-identical attributes
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Column comparison options
Logical tolerance
Use the tol.logical=
argument to change how logicals are compared. By default, they’re expected to be equal to each other.
Numeric tolerance
To allow numeric differences of a certain tolerance, use the tol.num=
and tol.num.val=
options. tol.num.val=
determines the maximum (unsigned) difference tolerated if tol.num="absolute"
(default), and determines the maximum (unsigned) percent difference tolerated if tol.num="percent"
.
Also note the option int.as.num=
, which determines whether integers and numerics should be compared despite their class difference. If TRUE
, the integers are coerced to numeric. Note that mockstudy$ast
is integer, while mockstudy2$ast
is numeric:
summary(compare(mockstudy, mockstudy2, by = "case",
tol.vars = c("._ ", "case"), # dots=underscores=spaces, ignore case
int.as.num = TRUE # compare integers and numerics
))
Variables not shared
x |
age |
2 |
integer |
Other variables not compared
race |
5 |
character |
race |
3 |
factor |
Observations not shared
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
Differences detected by variable
arm |
Arm |
0 |
0 |
sex |
sex |
1495 |
0 |
fu.time |
fu_time |
0 |
0 |
fu.stat |
fu stat |
0 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
ast |
ast |
3 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
First 10 differences detected per variable (1741 differences not shown)
sex |
sex |
76170 |
Male |
Male |
26 |
20 |
sex |
sex |
76240 |
Male |
Male |
27 |
21 |
sex |
sex |
76431 |
Female |
Female |
28 |
22 |
sex |
sex |
76712 |
Male |
Male |
29 |
23 |
sex |
sex |
76780 |
Female |
Female |
30 |
24 |
sex |
sex |
77066 |
Female |
Female |
31 |
25 |
sex |
sex |
77316 |
Male |
Male |
32 |
26 |
sex |
sex |
77355 |
Male |
Male |
33 |
27 |
sex |
sex |
77591 |
Male |
Male |
34 |
28 |
sex |
sex |
77851 |
Male |
Male |
35 |
29 |
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
ast |
ast |
86205 |
27 |
36 |
6 |
3 |
ast |
ast |
105271 |
100 |
36 |
3 |
2 |
ast |
ast |
110754 |
35 |
36 |
1 |
1 |
Non-identical attributes
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Suppose a tolerance of up to 10 is allowed for ast
:
summary(compare(mockstudy, mockstudy2, by = "case",
tol.vars = c("._ ", "case"), # dots=underscores=spaces, ignore case
int.as.num = TRUE, # compare integers and numerics
tol.num.val = 10 # allow absolute differences <= 10
))
Variables not shared
x |
age |
2 |
integer |
Other variables not compared
race |
5 |
character |
race |
3 |
factor |
Observations not shared
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
Differences detected by variable
arm |
Arm |
0 |
0 |
sex |
sex |
1495 |
0 |
fu.time |
fu_time |
0 |
0 |
fu.stat |
fu stat |
0 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
ast |
ast |
1 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
First 10 differences detected per variable (1741 differences not shown)
sex |
sex |
76170 |
Male |
Male |
26 |
20 |
sex |
sex |
76240 |
Male |
Male |
27 |
21 |
sex |
sex |
76431 |
Female |
Female |
28 |
22 |
sex |
sex |
76712 |
Male |
Male |
29 |
23 |
sex |
sex |
76780 |
Female |
Female |
30 |
24 |
sex |
sex |
77066 |
Female |
Female |
31 |
25 |
sex |
sex |
77316 |
Male |
Male |
32 |
26 |
sex |
sex |
77355 |
Male |
Male |
33 |
27 |
sex |
sex |
77591 |
Male |
Male |
34 |
28 |
sex |
sex |
77851 |
Male |
Male |
35 |
29 |
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
ast |
ast |
105271 |
100 |
36 |
3 |
2 |
Non-identical attributes
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Factor tolerance
By default, factors are compared to each other based on both the labels and the underlying numeric levels. Set tol.factor="levels"
to match only the numeric levels, or set tol.factor="labels"
to match only the labels.
summary(compare(mockstudy, mockstudy2, by = "case",
tol.vars = c("._ ", "case"), # dots=underscores=spaces, ignore case
int.as.num = TRUE, # compare integers and numerics
tol.num.val = 10, # allow absolute differences <= 10
tol.factor = "labels" # match only factor labels
))
Variables not shared
x |
age |
2 |
integer |
Other variables not compared
race |
5 |
character |
race |
3 |
factor |
Observations not shared
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
Differences detected by variable
arm |
Arm |
0 |
0 |
sex |
sex |
0 |
0 |
fu.time |
fu_time |
0 |
0 |
fu.stat |
fu stat |
0 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
ast |
ast |
1 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
First 10 differences detected per variable (256 differences not shown)
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
ast |
ast |
105271 |
100 |
36 |
3 |
2 |
Non-identical attributes
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Also note the option factor.as.char=
, which determines whether factors and characters should be compared despite their class difference. If TRUE
, the factors are coerced to characters. Note that mockstudy$race
is a character, while mockstudy2$race
is a factor:
summary(compare(mockstudy, mockstudy2, by = "case",
tol.vars = c("._ ", "case"), # dots=underscores=spaces, ignore case
int.as.num = TRUE, # compare integers and numerics
tol.num.val = 10, # allow absolute differences <= 10
tol.factor = "labels", # match only factor labels
factor.as.char = TRUE # compare factors and characters
))
Variables not shared
x |
age |
2 |
integer |
Observations not shared
No other variables not compared |
Differences detected by variable
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
First 10 differences detected per variable (1531 differences not shown)
arm |
Arm |
0 |
0 |
sex |
sex |
0 |
0 |
race |
race |
1285 |
0 |
fu.time |
fu_time |
0 |
0 |
fu.stat |
fu stat |
0 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
ast |
ast |
1 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
Non-identical attributes
race |
race |
76170 |
Caucasian |
caucasian |
26 |
20 |
race |
race |
76240 |
Caucasian |
caucasian |
27 |
21 |
race |
race |
76431 |
Caucasian |
caucasian |
28 |
22 |
race |
race |
76712 |
Caucasian |
caucasian |
29 |
23 |
race |
race |
76780 |
Caucasian |
caucasian |
30 |
24 |
race |
race |
77066 |
Caucasian |
caucasian |
31 |
25 |
race |
race |
77316 |
Caucasian |
caucasian |
32 |
26 |
race |
race |
77591 |
Caucasian |
caucasian |
34 |
28 |
race |
race |
77851 |
Caucasian |
caucasian |
35 |
29 |
race |
race |
77956 |
Caucasian |
caucasian |
36 |
30 |
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
ast |
ast |
105271 |
100 |
36 |
3 |
2 |
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Character tolerance
Use the tol.char=
argument to change how character variables are compared. By default, they are compared as-is, but they can be compared after ignoring case or trimming whitespace or both.
summary(compare(mockstudy, mockstudy2, by = "case",
tol.vars = c("._ ", "case"), # dots=underscores=spaces, ignore case
int.as.num = TRUE, # compare integers and numerics
tol.num.val = 10, # allow absolute differences <= 10
tol.factor = "labels", # match only factor labels
factor.as.char = TRUE, # compare factors and characters
tol.char = "case" # ignore case in character vectors
))
Variables not shared
x |
age |
2 |
integer |
Observations not shared
No other variables not compared |
Differences detected by variable
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
First 10 differences detected per variable (256 differences not shown)
arm |
Arm |
0 |
0 |
sex |
sex |
0 |
0 |
race |
race |
0 |
0 |
fu.time |
fu_time |
0 |
0 |
fu.stat |
fu stat |
0 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
266 |
266 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
ast |
ast |
1 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
Non-identical attributes
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
hgb |
hgb |
88714 |
NA |
-9 |
192 |
186 |
hgb |
hgb |
88955 |
NA |
-9 |
204 |
198 |
hgb |
hgb |
89549 |
NA |
-9 |
229 |
223 |
hgb |
hgb |
89563 |
NA |
-9 |
231 |
225 |
hgb |
hgb |
89584 |
NA |
-9 |
237 |
231 |
hgb |
hgb |
89591 |
NA |
-9 |
238 |
232 |
hgb |
hgb |
89595 |
NA |
-9 |
239 |
233 |
hgb |
hgb |
89647 |
NA |
-9 |
243 |
237 |
hgb |
hgb |
89665 |
NA |
-9 |
244 |
238 |
hgb |
hgb |
89827 |
NA |
-9 |
255 |
249 |
ast |
ast |
105271 |
100 |
36 |
3 |
2 |
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Date tolerance
Use the tol.date=
argument to change how dates are compared. By default, they’re expected to be equal to each other.
Other data type tolerances
Use the tol.other=
argument to change how other objects are compared. By default, they’re expected to be identical()
.
User-defined tolerance functions
Details
The comparison.control()
function accepts functions for any of the tolerance arguments in addition to the short-hand character strings. This allows the user to create custom tolerance functions to suit his/her needs.
Any custom tolerance function must accept two vectors as arguments and return a logical vector of the same length. The TRUE
s in the results should correspond to elements which are deemed “different”. Note that the numeric and date tolerance functions should also include a third argument for tolerance size (even if it’s not used).
CAUTION: the results should not include NAs, since the logical vector is used to subset the input data.frames. The tol.NA()
function is useful for considering any NAs in the two vectors (but not both) as differences, in addition to other criteria.
function (x, y, idx)
{
(is.na(x) & !is.na(y)) | (is.na(y) & !is.na(x)) | (!is.na(x) &
!is.na(y) & idx)
}
<environment: namespace:arsenal>
The tol.NA()
function is used in all default tolerance functions to help handle NAs.
Example 1
Suppose we want to ignore any dates which are later in the second dataset than the first. We define a custom tolerance function.
my.tol <- function(x, y, tol)
{
tol.NA(x, y, x > y)
}
date.df1 <- data.frame(dt = as.Date(c("2017-09-07", "2017-08-08", "2017-07-09", NA)))
date.df2 <- data.frame(dt = as.Date(c("2017-10-01", "2017-08-08", "2017-07-10", "2017-01-01")))
n.diffs(compare(date.df1, date.df2)) # default finds any differences
[1] 3
n.diffs(compare(date.df1, date.df2, tol.date = my.tol)) # our function identifies only the NA as different...
[1] 1
n.diffs(compare(date.df2, date.df1, tol.date = my.tol)) # ... until we change the argument order
[1] 3
Example 2
(Continuing our mockstudy example)
Suppose we’re okay with NAs getting replaced by -9.
tol.minus9 <- function(x, y, tol)
{
idx1 <- is.na(x) & !is.na(y) & y == -9
idx2 <- tol.num.absolute(x, y, tol) # find other absolute differences
return(!idx1 & idx2)
}
summary(compare(mockstudy, mockstudy2, by = "case",
tol.vars = c("._ ", "case"), # dots=underscores=spaces, ignore case
int.as.num = TRUE, # compare integers and numerics
tol.num.val = 10, # allow absolute differences <= 10
tol.factor = "labels", # match only factor labels
factor.as.char = TRUE, # compare factors and characters
tol.char = "case", # ignore case in character vectors
tol.num = tol.minus9 # ignore NA -> -9 changes
))
Variables not shared
x |
age |
2 |
integer |
Observations not shared
No other variables not compared |
Differences detected by variable
x |
88989 |
9 |
x |
90158 |
8 |
x |
99508 |
7 |
x |
112263 |
5 |
First 10 differences detected per variable
arm |
Arm |
0 |
0 |
sex |
sex |
0 |
0 |
race |
race |
0 |
0 |
fu.time |
fu_time |
0 |
0 |
fu.stat |
fu stat |
0 |
0 |
ps |
ps |
1 |
1 |
hgb |
hgb |
0 |
0 |
bmi |
bmi |
0 |
0 |
alk.phos |
alk.phos |
0 |
0 |
ast |
ast |
1 |
0 |
mdquality.s |
mdquality.s |
0 |
0 |
age.ord |
age.ord |
0 |
0 |
Non-identical attributes
ps |
ps |
86205 |
0 |
NA |
6 |
3 |
ast |
ast |
105271 |
100 |
36 |
3 |
2 |
arm |
Arm |
label |
sex |
sex |
label |
sex |
sex |
levels |
race |
race |
class |
race |
race |
label |
race |
race |
levels |
bmi |
bmi |
label |
Appendix
Stucture of the Object
(This section is just as much for my use as for yours!)
obj <- compare(mockstudy, mockstudy2, by = "case")
There are two main objects in the "compare.data.frame"
object, each with its own print method.
The frame.summary
contains:
information about the number of columns and rows in each dataset
the by-variables for each dataset (which may not be the same)
the attributes for each dataset (which get counted in the print method)
a data.frame of by-variables and row numbers of observations not shared between datasets
the number of shared observations
version ncol nrow by attrs unique n.shared
1 x 14 1499 case 3 attributes 4 unique obs 1495
2 y 13 1495 case 3 attributes 0 unique obs 1495
The vars.summary
contains:
variable name, column number, and class vector (with possibly more than one element) for each x and y. These are all NA
if there isn’t a match in both datasets.
values, a list-column of the text string "by-variable"
for the by-variables, NULL
for columns that aren’t compared, or a data.frame containing:
The by-variables for differences found
The values which are different for x and y
The row numbers for differences found
attrs, a list-column of NULL
if there are no attributes, or a data.frame containing:
var.x pos.x class.x var.y pos.y class.y values attrs
8 case 1 integer case 1 integer by-variable 0 attributes
17 sex 4 factor sex 2 factor 1495 differences 2 attributes
16 race 5 character race 3 factor Not compared 3 attributes
15 ps 8 integer ps 4 integer 1 differences 0 attributes
13 hgb 9 numeric hgb 5 numeric 266 differences 0 attributes
7 bmi 10 numeric bmi 6 numeric 0 differences 1 attributes
4 alk.phos 11 integer alk.phos 7 integer 0 differences 0 attributes
6 ast 12 integer ast 8 numeric Not compared 0 attributes
14 mdquality.s 13 integer mdquality.s 9 integer 0 differences 0 attributes
3 age.ord 14 ordered, factor age.ord 10 ordered, factor 0 differences 0 attributes
2 age 2 integer <NA> NA NA Not compared 0 attributes
5 arm 3 character <NA> NA NA Not compared 0 attributes
11 fu.time 6 integer <NA> NA NA Not compared 0 attributes
10 fu.stat 7 integer <NA> NA NA Not compared 0 attributes
12 <NA> NA NA fu_time 11 integer Not compared 0 attributes
9 <NA> NA NA fu stat 12 integer Not compared 0 attributes
1 <NA> NA NA Arm 13 character Not compared 0 attributes