bamlss: Bayesian Additive Models for Location Scale and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2017) <http://EconPapers.RePEc.org/RePEc:inn:wpaper:2017-05>.

Version: 0.1-2
Depends: R (≥ 3.2.3), coda, colorspace, mgcv
Imports: Formula, MBA, mvtnorm, sp, spam, Matrix, survival, methods, parallel
Suggests: akima, bit, fields, gamlss, geoR, rjags, BayesX, BayesXsrc, mapdata, maps, maptools, raster, spatstat, spdep, zoo
Published: 2017-04-14
Author: Nikolaus Umlauf [aut, cre], Nadja Klein [aut], Achim Zeileis [aut], Meike Koehler [aut]
Maintainer: Nikolaus Umlauf <Nikolaus.Umlauf at uibk.ac.at>
License: GPL-2 | GPL-3
NeedsCompilation: yes
Citation: bamlss citation info
Materials: ChangeLog
CRAN checks: bamlss results

Downloads:

Reference manual: bamlss.pdf
Package source: bamlss_0.1-2.tar.gz
Windows binaries: r-devel: bamlss_0.1-2.zip, r-release: bamlss_0.1-2.zip, r-oldrel: bamlss_0.1-2.zip
OS X El Capitan binaries: r-release: bamlss_0.1-2.tgz
OS X Mavericks binaries: r-oldrel: bamlss_0.1-2.tgz
Old sources: bamlss archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bamlss to link to this page.