bigpca: PCA, Transpose and Multicore Functionality for 'big.matrix' Objects

Adds wrappers to add functionality for big.matrix objects (see the bigmemory project). This allows fast scalable principle components analysis (PCA), or singular value decomposition (SVD). There are also functions for transposing, using multicore 'apply' functionality, data importing and for compact display of big.matrix objects. Most functions also work for standard matrices if RAM is sufficient.

Version: 1.1
Depends: R (≥ 3.0), grDevices, graphics, stats, utils, reader (≥ 1.0.1), NCmisc (≥ 1.1), bigmemory (≥ 4.0.0), biganalytics
Imports: parallel, methods, bigmemory.sri, irlba
Published: 2017-11-21
Author: Nicholas Cooper
Maintainer: Nicholas Cooper <njcooper at gmx.co.uk>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: bigpca results

Downloads:

Reference manual: bigpca.pdf
Package source: bigpca_1.1.tar.gz
Windows binaries: r-devel: not available, r-release: bigpca_1.1.zip, r-oldrel: bigpca_1.1.zip
OS X El Capitan binaries: r-release: bigpca_1.1.tgz
OS X Mavericks binaries: r-oldrel: bigpca_1.1.tgz
Old sources: bigpca archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bigpca to link to this page.