crch: Censored Regression with Conditional Heteroscedasticity

Different approaches to censored or truncated regression with conditional heteroscedasticity are provided. First, continuous distributions can be used for the (right and/or left censored or truncated) response with separate linear predictors for the mean and variance. Second, cumulative link models for ordinal data (obtained by interval-censoring continuous data) can be employed for heteroscedastic extended logistic regression (HXLR). In the latter type of models, the intercepts depend on the thresholds that define the intervals.

Version: 1.0-1
Depends: R (≥ 2.10.0)
Imports: stats, Formula, ordinal, sandwich, scoringRules
Suggests: glmx, lmtest, memisc
Published: 2018-01-23
Author: Jakob Messner ORCID iD [aut, cre], Achim Zeileis ORCID iD [aut], Reto Stauffer ORCID iD [aut]
Maintainer: Jakob Messner <jwmm at elektro.dtu.dk>
License: GPL-2 | GPL-3
NeedsCompilation: yes
Citation: crch citation info
Materials: NEWS
In views: Econometrics
CRAN checks: crch results

Downloads:

Reference manual: crch.pdf
Vignettes: Heteroscedastic Censored and Truncated Regression with crch
Package source: crch_1.0-1.tar.gz
Windows binaries: r-devel: crch_1.0-1.zip, r-release: crch_1.0-1.zip, r-oldrel: crch_1.0-1.zip
OS X El Capitan binaries: r-release: crch_1.0-1.tgz
OS X Mavericks binaries: r-oldrel: crch_1.0-0.tgz
Old sources: crch archive

Reverse dependencies:

Reverse suggests: ensemblepp, scoringRules
Reverse enhances: prediction

Linking:

Please use the canonical form https://CRAN.R-project.org/package=crch to link to this page.