ddalpha: Depth-Based Classification and Calculation of Data Depth

Contains procedures for depth-based supervised learning, which are entirely non-parametric, in particular the DDalpha-procedure (Lange, Mosler and Mozharovskyi, 2014). The training data sample is transformed by a statistical depth function to a compact low-dimensional space, where the final classification is done. It also offers an extension to functional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included.

Depends: stats, utils, graphics, grDevices, MASS, class, robustbase, sfsmisc
Imports: Rcpp (≥ 0.11.0)
LinkingTo: BH, Rcpp
Published: 2018-02-02
Author: Oleksii Pokotylo [aut, cre], Pavlo Mozharovskyi [aut], Rainer Dyckerhoff [aut], Stanislav Nagy [aut]
Maintainer: Oleksii Pokotylo <alexey.pokotylo at gmail.com>
License: GPL-2
NeedsCompilation: yes
SystemRequirements: C++11
Citation: ddalpha citation info
CRAN checks: ddalpha results


Reference manual: ddalpha.pdf
Package source: ddalpha_1.3.1.1.tar.gz
Windows binaries: r-devel: ddalpha_1.3.1.1.zip, r-release: ddalpha_1.3.1.1.zip, r-oldrel: ddalpha_1.3.1.1.zip
OS X El Capitan binaries: r-release: ddalpha_1.3.1.1.tgz
OS X Mavericks binaries: r-oldrel: ddalpha_1.3.1.tgz
Old sources: ddalpha archive

Reverse dependencies:

Reverse depends: TukeyRegion
Reverse imports: pdSpecEst, recipes


Please use the canonical form https://CRAN.R-project.org/package=ddalpha to link to this page.