fabricatr: Imagine Your Data Before You Collect It

Helps you imagine your data before you collect it. Hierarchical data structures and correlated data can be easily simulated, either from random number generators or by resampling from existing data sources. This package is faster with 'data.table' and 'mvnfast' installed.

Version: 0.2.0
Depends: R (≥ 3.3.0)
Imports: rlang
Suggests: testthat, dplyr, knitr, rmarkdown, data.table, mvnfast, diagram
Published: 2018-01-25
Author: Graeme Blair [aut, cre], Jasper Cooper [aut], Alexander Coppock [aut], Macartan Humphreys [aut], Aaron Rudkin [aut], Neal Fultz [ctb]
Maintainer: Graeme Blair <graeme.blair at ucla.edu>
BugReports: https://github.com/DeclareDesign/fabricatr/issues
License: MIT + file LICENSE
URL: http://fabricatr.declaredesign.org, https://github.com/DeclareDesign/fabricatr
NeedsCompilation: no
CRAN checks: fabricatr results

Downloads:

Reference manual: fabricatr.pdf
Vignettes: Advanced features
Building and Importing Data
Common Social Sciences variables
Panel and Cross-classified data
Getting started with **fabricatr**
Using other data generating packages with **fabricatr**
Resampling data with fabricatr
Generating discrete random variables with fabricatr
Package source: fabricatr_0.2.0.tar.gz
Windows binaries: r-devel: fabricatr_0.2.0.zip, r-release: fabricatr_0.2.0.zip, r-oldrel: fabricatr_0.2.0.zip
OS X El Capitan binaries: r-release: fabricatr_0.2.0.tgz
OS X Mavericks binaries: r-oldrel: not available

Reverse dependencies:

Reverse suggests: estimatr

Linking:

Please use the canonical form https://CRAN.R-project.org/package=fabricatr to link to this page.