glmmTMB: Generalized Linear Mixed Models using Template Model Builder

Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.

Version: 0.2.0
Imports: methods, TMB (≥ 1.7.6), lme4 (≥ 1.1-10), Matrix, nlme
LinkingTo: TMB, RcppEigen
Suggests: knitr, testthat, MASS, lattice, ggplot2, mlmRev, bbmle (≥ 1.0.19), pscl, MCMCpack, coda, reshape2
Published: 2017-12-11
Author: Arni Magnusson [aut], Hans Skaug [aut], Anders Nielsen [aut], Casper Berg [aut], Kasper Kristensen [aut], Martin Maechler [aut], Koen van Bentham [aut], Ben Bolker [aut], Mollie Brooks [aut, cre]
Maintainer: Mollie Brooks <mollieebrooks at>
License: AGPL-3
NeedsCompilation: yes
Citation: glmmTMB citation info
CRAN checks: glmmTMB results


Reference manual: glmmTMB.pdf
Vignettes: random effect structures
post-hoc MCMC
miscellaneous examples
basic examples of glmmTMB usage
Package source: glmmTMB_0.2.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: glmmTMB_0.2.0.tgz
OS X Mavericks binaries: r-oldrel: glmmTMB_0.2.0.tgz
Old sources: glmmTMB archive

Reverse dependencies:

Reverse imports: sjPlot, sjstats
Reverse suggests: sjlabelled


Please use the canonical form to link to this page.