Kernel-based machine learning methods for classification,
regression, clustering, novelty detection, quantile regression
and dimensionality reduction. Among other methods 'kernlab'
includes Support Vector Machines, Spectral Clustering, Kernel
PCA, Gaussian Processes and a QP solver.
Reverse depends: |
CVST, DRR, DTRlearn, exprso, kappalab, kfda, pathClass, probsvm, RaPKod, svmadmm, SVMMaj |
Reverse imports: |
ABPS, BKPC, CondIndTests, DeLorean, diceR, DynTxRegime, fpc, fPortfolio, funcy, gkmSVM, iqspr, kernelFactory, kpcalg, KRMM, ks, nlcv, PCDimension, personalized, plsRcox, qrjoint, qrsvm, rminer, robCompositions, ROI.plugin.ipop, RSSL, survivalsvm, SwarmSVM, Synth, tsensembler, tsiR, VRPM |
Reverse suggests: |
BiodiversityR, bWGR, caret, caretEnsemble, colorspace, CompareCausalNetworks, conformal, dimRed, dismo, evtree, FactorsR, fscaret, gamclass, GAparsimony, mistral, mlr, mlrMBO, MSCMT, pdp, pmml, preprocomb, rattle, recipes, RStoolbox, sand, SuperLearner, supervisedPRIM, vcd |
Reverse enhances: |
clue |