markovchain: Easy Handling Discrete Time Markov Chains

Functions and S4 methods to create and manage discrete time Markov chains more easily. In addition functions to perform statistical (fitting and drawing random variates) and probabilistic (analysis of their structural proprieties) analysis are provided.

Depends: R (≥ 3.2.0), methods
Imports: igraph, Matrix, matlab, expm, stats4, parallel, Rcpp (≥ 0.11.5), RcppParallel, utils, stats, grDevices
LinkingTo: Rcpp, RcppParallel, RcppArmadillo
Suggests: knitr, testthat, diagram, DiagrammeR, msm, etm, Rsolnp, knitcitations, rmarkdown, ctmcd
Published: 2017-08-16
Author: Giorgio Alfredo Spedicato [aut,cre], Tae Seung Kang [aut], Sai Bhargav Yalamanchi [aut], Mildenberger Thoralf [ctb], Deepak Yadav [ctb], Nacho Cordón Castillo [ctb], Vandit Jain [ctb]
Maintainer: Giorgio Alfredo Spedicato <spedicato_giorgio at>
License: GPL-2
NeedsCompilation: yes
SystemRequirements: GNU make
Citation: markovchain citation info
Materials: README NEWS ChangeLog
In views: Finance
CRAN checks: markovchain results


Reference manual: markovchain.pdf
Vignettes: An introduction to markovchain package
Higher order markov chains
Complicate Steady States Analysis
Crash Introduction to markovchain R package
Package source: markovchain_0.6.9.8-1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: markovchain_0.6.9.8-1.tgz
OS X Mavericks binaries: r-oldrel: markovchain_0.6.9.8-1.tgz
Old sources: markovchain archive

Reverse dependencies:

Reverse imports: lifecontingencies, Robocoap
Reverse suggests: aqp, ctmcd, FuzzyStatProb


Please use the canonical form to link to this page.