preprosim: Lightweight Data Quality Simulation for Classification

Data quality simulation can be used to check the robustness of data analysis findings and learn about the impact of data quality contaminations on classification. This package helps to add contaminations (noise, missing values, outliers, low variance, irrelevant features, class swap (inconsistency), class imbalance and decrease in data volume) to data and then evaluate the simulated data sets for classification accuracy. As a lightweight solution simulation runs can be set up with no or minimal up-front effort.

Version: 0.2.0
Imports: DMwR, reshape2, ggplot2, methods, stats, caret, doParallel, foreach, e1071
Suggests: gbm, preprocomb, preproviz, knitr, rmarkdown
Published: 2016-07-26
Author: Markus Vattulainen [aut, cre]
Maintainer: Markus Vattulainen <markus.vattulainen at gmail.com>
BugReports: https://github.com/mvattulainen/preprosim/issues
License: GPL-2
URL: https://github.com/mvattulainen/preprosim
NeedsCompilation: no
CRAN checks: preprosim results

Downloads:

Reference manual: preprosim.pdf
Vignettes: Preprosim
Package source: preprosim_0.2.0.tar.gz
Windows binaries: r-devel: preprosim_0.2.0.zip, r-release: preprosim_0.2.0.zip, r-oldrel: preprosim_0.2.0.zip
OS X El Capitan binaries: r-release: preprosim_0.2.0.tgz
OS X Mavericks binaries: r-oldrel: preprosim_0.2.0.tgz
Old sources: preprosim archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=preprosim to link to this page.