A fast, flexible, and comprehensive framework for
quantitative text analysis in R. Provides functionality for corpus management,
creating and manipulating tokens and ngrams, exploring keywords in context,
forming and manipulating sparse matrices
of documents by features and feature co-occurrences, analyzing keywords, computing feature similarities and
distances, applying content dictionaries, applying supervised and unsupervised machine learning,
visually representing text and text analyses, and more.
Version: |
1.0.0 |
Depends: |
R (≥ 3.4.0), methods |
Imports: |
utils, extrafont, digest, stats, Matrix (≥ 1.2), data.table (≥ 1.9.6), SnowballC, wordcloud, sna, network, ggrepel, Rcpp (≥ 0.12.12), RcppParallel, RSpectra, stringi, fastmatch, ggplot2 (≥ 2.2.0), XML, yaml, lubridate, magrittr, spacyr, stopwords |
LinkingTo: |
Rcpp, RcppParallel, RcppArmadillo (≥ 0.7.600.1.0) |
Suggests: |
knitr, rmarkdown, lda, proxy, topicmodels, tm (≥ 0.6), slam, testthat, RColorBrewer, xtable, DT, ca, purrr |
Published: |
2018-01-28 |
Author: |
Kenneth Benoit [aut, cre, cph],
Kohei Watanabe [ctb],
Paul Nulty [ctb],
Adam Obeng [ctb],
Haiyan Wang [ctb],
Stefan Müller [ctb],
Benjamin Lauderdale [ctb],
Will Lowe [ctb] |
Maintainer: |
Kenneth Benoit <kbenoit at lse.ac.uk> |
BugReports: |
https://github.com/quanteda/quanteda/issues |
License: |
GPL-3 |
URL: |
http://quanteda.io |
NeedsCompilation: |
yes |
SystemRequirements: |
C++11 |
Citation: |
quanteda citation info |
Materials: |
README NEWS |
In views: |
NaturalLanguageProcessing |
CRAN checks: |
quanteda results |