An efficient C++ based implementation of "Follow The (Proximally) Regularized Leader" online learning algorithm. This algorithm was proposed in McMahan et al. (2013) <doi:10.1145/2487575.2488200>.
Version: | 1.0.0 |
Depends: | R (≥ 2.10) |
Imports: | stats, utils, data.table (≥ 1.9.6), Matrix, FeatureHashing, magrittr, foreach, Rcpp, RcppProgress |
LinkingTo: | Rcpp, RcppArmadillo, RcppProgress |
Suggests: | rBayesianOptimization, MLmetrics |
Published: | 2016-12-27 |
Author: | Author: Yachen Yan [aut, cre] |
Maintainer: | Yachen Yan <yanyachen21 at gmail.com> |
BugReports: | http://github.com/yanyachen/rFTRLProximal/issues |
License: | GPL-2 |
URL: | http://github.com/yanyachen/rFTRLProximal |
NeedsCompilation: | yes |
CRAN checks: | rFTRLProximal results |
Reference manual: | rFTRLProximal.pdf |
Package source: | rFTRLProximal_1.0.0.tar.gz |
Windows binaries: | r-devel: rFTRLProximal_1.0.0.zip, r-release: rFTRLProximal_1.0.0.zip, r-oldrel: rFTRLProximal_1.0.0.zip |
OS X El Capitan binaries: | r-release: rFTRLProximal_1.0.0.tgz |
OS X Mavericks binaries: | r-oldrel: rFTRLProximal_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=rFTRLProximal to link to this page.