Fit Gaussian hidden Markov (or semi-Markov) models with / without autoregressive coefficients and with / without regularization. The fitting algorithm for the hidden Markov model is illustrated by Rabiner (1989) <doi:10.1109/5.18626>. The shrinkage estimation on the covariance matrices is based on the method by Ledoit et al. (2004) <doi:10.1016/S0047-259X(03)00096-4>. The shrinkage estimation on the autoregressive coefficients uses the elastic net shrinkage detailed in Zou et al. (2005) <doi:10.1111/j.1467-9868.2005.00503.x>.
Version: | 1.0.5 |
Depends: | R (≥ 3.0.0) |
Imports: | Rcpp (≥ 0.12.9), glmnet |
LinkingTo: | Rcpp, RcppArmadillo |
Published: | 2017-10-18 |
Author: | Zekun (Jack) Xu, Ye Liu |
Maintainer: | Zekun Xu <zekunxu at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GPL] |
NeedsCompilation: | yes |
CRAN checks: | rarhsmm results |
Reference manual: | rarhsmm.pdf |
Package source: | rarhsmm_1.0.5.tar.gz |
Windows binaries: | r-devel: rarhsmm_1.0.5.zip, r-release: rarhsmm_1.0.5.zip, r-oldrel: rarhsmm_1.0.5.zip |
OS X El Capitan binaries: | r-release: rarhsmm_1.0.5.tgz |
OS X Mavericks binaries: | r-oldrel: rarhsmm_1.0.5.tgz |
Old sources: | rarhsmm archive |
Please use the canonical form https://CRAN.R-project.org/package=rarhsmm to link to this page.