Implements reinforcement learning environments and algorithms as described in Sutton & Barto (1998, ISBN:0262193981). The Q-Learning algorithm can be used with different types of function approximation (tabular and neural network), eligibility traces (Singh & Sutton (1996) <doi:10.1007/BF00114726>) and experience replay (Mnih et al. (2013) <arXiv:1312.5602>).
Version: | 0.1.0 |
Depends: | R (≥ 3.0.0) |
Imports: | checkmate (≥ 1.8.4), R6 (≥ 2.2.2), nnet (≥ 7.3-12), purrr (≥ 0.2.4) |
Suggests: | reticulate, keras, knitr, rmarkdown, testthat, covr, lintr |
Published: | 2018-01-03 |
Author: | Markus Dumke [aut, cre] |
Maintainer: | Markus Dumke <markusdumke at gmail.com> |
BugReports: | https://github.com/markusdumke/reinforcelearn/issues |
License: | MIT + file LICENSE |
URL: | http://markusdumke.github.io/reinforcelearn |
NeedsCompilation: | no |
SystemRequirements: | (Python and gym only required if gym environments are used) |
Materials: | README NEWS |
CRAN checks: | reinforcelearn results |
Reference manual: | reinforcelearn.pdf |
Vignettes: |
Agents Environments |
Package source: | reinforcelearn_0.1.0.tar.gz |
Windows binaries: | r-devel: reinforcelearn_0.1.0.zip, r-release: reinforcelearn_0.1.0.zip, r-oldrel: reinforcelearn_0.1.0.zip |
OS X El Capitan binaries: | r-release: reinforcelearn_0.1.0.tgz |
OS X Mavericks binaries: | r-oldrel: reinforcelearn_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=reinforcelearn to link to this page.