"beta"
)"unif"
)"expM"
)"gev"
)"gpd"
)"gtclogis"
)"gtcnorm"
)"gtct"
)where the first is the kernel representation, followed by the threshold decomposition, and lastly the quantile decomposition. The threshold decomposition corresponds to the integral of the Brier score over all event thresholds, while the quantile decomposition is the integral of the quantile score over all probabilities.
"lapl"
)Parameters:
Name | Domain |
---|---|
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
See also: Two-piece exponential distribution
"logis"
)Parameters:
Name | Domain |
---|---|
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
See also: Generalized truncated/censored logistic distribution
"norm"
)Parameters:
Name | Domain |
---|---|
"mean" |
\(\mu \in \mathbb{R}\) |
"sd" |
\(\sigma > 0\) |
Notes:
See also: Mixture of normal distributions, Two-piece normal distribution, Generalized truncated/censored normal distribution
"mixnorm"
)Parameters:
Name | Domain |
---|---|
"m" |
\(\mu_1, \ldots, \mu_M \in \mathbb{R}\) |
"s" |
\(\sigma_1, \ldots, \sigma_M > 0\) |
"w" |
\(\omega_1, \ldots, \omega_M > 0\), \(\omega_1 + \ldots + \omega_M = 1\) |
Notes:
See also: Normal distribution
"t"
)Parameters:
Name | Domain |
---|---|
"df" |
\(\nu > 1\) (for \(\nu \in (0, 1]\) the CRPS is undefined) |
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
Mathematical functions:
Symbol | Name |
---|---|
\({}_2F_1\) | hypergeometric function |
\(B\) | beta function |
See also: Generalized truncated/censored Student’s \(t\)-distribution
"2pexp"
)Parameters:
Name | Domain |
---|---|
"location" |
\(\mu \in \mathbb{R}\) |
"scale1" |
\(\sigma_1 > 0\) |
"scale2" |
\(\sigma_2 > 0\) |
See also: Laplace
"2pnorm"
)with \(F_{l, L}^{u, U}\) as in Generalized truncated/censored normal distribution.
Two-piece normal distribution: \[\begin{align*} F_{\sigma_1,\sigma_2}(x) &= \begin{cases} \frac{2\sigma_1}{\sigma_1+\sigma_2}\Phi\left(\frac{x}{\sigma_1}\right), & x < 0,\\ \frac{\sigma_1-\sigma_2}{\sigma_1+\sigma_2} + \frac{2\sigma_2}{\sigma_1+\sigma_2} \Phi\left(\frac{x}{\sigma_2}\right), & x \ge 0, \end{cases} \\ F_{\mu, \sigma_1, \sigma_2}(x) &= F_{\sigma_1, \sigma_2}(x - \mu), \\ \Phi(x) &= \int_{-\infty}^x \varphi(t)\, \mathrm{d} x, \\ \varphi(x) &= \tfrac{1}{\sqrt{2\pi}}\exp\left(-\tfrac{x^2}{2}\right). \end{align*}\]Parameters:
Name | Domain |
---|---|
"location" |
\(\mu \in \mathbb{R}\) |
"scale1" |
\(\sigma_1 > 0\) |
"scale2" |
\(\sigma_2 > 0\) |
Notes:
See also: Normal distribution
"exp"
)Parameters:
Name | Domain |
---|---|
"rate" |
\(\lambda > 0\) |
See also: Exponential distribution with point mass, Generalized Pareto distribution with point mass
"gamma"
)Parameters:
Name | Domain |
---|---|
"shape" |
\(\alpha > 0\) |
"rate" |
\(\beta > 0\) |
Mathematical functions:
Symbol | Name |
---|---|
\(B\) | beta function |
\(\Gamma\) | gamma function |
\(\Gamma_l\) | lower incomplete gamma function |
Notes:
"llapl"
)Parameters:
Name | Domain |
---|---|
"locationlog" |
\(\mu \in \mathbb{R}\) |
"scalelog" |
\(\sigma \in (0, 1)\) (for \(\sigma \ge 1\) the CRPS is undefined) |
"llogis"
)Parameters:
Name | Domain |
---|---|
"locationlog" |
\(\mu \in \mathbb{R}\) |
"scalelog" |
\(\sigma \in (0, 1)\) (for \(\sigma \ge 1\) the CRPS is undefined) |
Mathematical functions:
Symbol | Name |
---|---|
\(B(\cdot, \cdot)\) | beta function |
\(B(x; \cdot, \cdot)\) | incomplete beta function |
Notes:
"lnorm"
)Parameters:
Name | Domain |
---|---|
"locationlog" |
\(\mu \in \mathbb{R}\) |
"scalelog" |
\(\sigma > 0\) |
Notes:
"beta"
)Parameters:
Name | Domain |
---|---|
"shape1" |
\(\alpha > 0\) |
"shape2" |
\(\beta > 0\) |
"lower" |
\(l \in \mathbb{R}\), \(l < u\) |
"upper" |
\(u \in \mathbb{R}\), \(l < u\) |
Mathematical functions:
Symbol | Name |
---|---|
\(B\) | beta function |
\(I\) | regularized incomplete beta function |
Notes:
See also: Continuous uniform distribution
"unif"
)See also: Beta distribution
"unif"
)Parameters:
Name | Domain |
---|---|
"min" |
\(l \in \mathbb{R}\), \(l < u\) |
"max" |
\(u \in \mathbb{R}\), \(l < u\) |
"lmass" |
\(L \ge 0\), \(L + U < 1\) |
"umass" |
\(U \ge 0\), \(L + U < 1\) |
"expM"
)Parameters:
Name | Domain |
---|---|
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
"mass" |
\(M \in [0, 1]\) |
See also: Exponential distribution, Generalized Pareto distribution with point mass
"gev"
)Parameters:
Name | Domain |
---|---|
"shape" |
\(\xi < 1\) (for \(\xi \ge 1\) the CRPS is undefined) |
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
Mathematical constants and functions:
Symbol | Name |
---|---|
\(C\) | Euler-Mascheroni constant |
\(\mathrm{Ei}\) | exponential integral |
\(\Gamma\) | gamma function |
\(\Gamma_u\) | upper incomplete gamma function |
Notes:
"gpd"
)Parameters:
Name | Domain |
---|---|
"shape" |
\(\xi < 1\) (for \(\xi \ge 1\) the CRPS is undefined) |
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
"mass" |
\(M \in [0, 1]\) |
Notes:
See also: Exponential distribution, Exponential distribution with point mass
"gtclogis"
)Parameters:
Name | Domain |
---|---|
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
"lower" |
\(l \in \mathbb{R}\), \(l < u\) |
"upper" |
\(u \in \mathbb{R}\), \(l < u\) |
"lmass" |
\(L \ge 0\), \(L + U < 1\) |
"umass" |
\(U \ge 0\), \(L + U < 1\) |
See also: Logistic distribution
"clogis"
)where all other symbols are as given in Generalized truncated/censored logistic distribution.
Notes:
"tlogis"
)where all other symbols are as given in Generalized truncated/censored logistic distribution.
Notes:
"gtcnorm"
)Parameters:
Name | Domain |
---|---|
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
"lower" |
\(l \in \mathbb{R}\), \(l < u\) |
"upper" |
\(u \in \mathbb{R}\), \(l < u\) |
"lmass" |
\(L \ge 0\), \(L + U < 1\) |
"umass" |
\(U \ge 0\), \(L + U < 1\) |
See also: Normal distribution
"cnorm"
)where all other symbols are as given in Generalized truncated/censored normal distribution.
Notes:
"tnorm"
)where all other symbols are as given in Generalized truncated/censored normal distribution.
Notes:
"gtct"
)Parameters:
Name | Domain |
---|---|
"df" |
\(\nu > 0\) (for \(\nu \le 1\) the CRPS is undefined) |
"location" |
\(\mu \in \mathbb{R}\) |
"scale" |
\(\sigma > 0\) |
"lower" |
\(l \in \mathbb{R}\), \(l < u\) |
"upper" |
\(u \in \mathbb{R}\), \(l < u\) |
"lmass" |
\(L \ge 0\), \(L + U < 1\) |
"umass" |
\(U \ge 0\), \(L + U < 1\) |
Mathematical functions:
Symbol | Name |
---|---|
\({}_2F_1\) | hypergeometric function |
\(B\) | beta function |
\(I\) | regularized incomplete beta function |
\(\mathrm{sgn}\) | sign function |
See also: Student’s \(t\)-distribution
"ct"
)where all other symbols are as given in Generalized truncated/censored Student’s \(t\)-distribution.
"tt"
)where all other symbols are as given in Generalized truncated/censored Student’s \(t\)-distribution.
"nbinom"
)Parameters:
Name | Domain |
---|---|
"size" |
\(n > 0\) |
"prob" |
\(p \in (0, 1]\) |
Mathematical functions:
Symbol | Name |
---|---|
\(\lfloor\cdot\rfloor\) | floor function |
\({}_2F_1\) | hypergeometric function |
\(I\) | regularized incomplete beta function |
Notes:
"pois"
)Parameter:
Name | Domain |
---|---|
"lambda" |
\(\lambda > 0\) |
Mathematical functions:
Symbol | Name |
---|---|
\(\lfloor \cdot \rfloor\) | floor function |
\(\Gamma\) | gamma function |
\(\Gamma_u\) | upper incomplete gamma function |
\(I_m\) | modified Bessel function of the first kind |
Notes:
Baran, S, and S Lerch. 2015. “Log-Normal Distribution Based EMOS Models for Probabilistic Wind Speed Forecasting.” Quarterly Journal of the Royal Meteorological Society 141: 2289–99.
Friederichs, P, and T L Thorarinsdottir. 2012. “Forecast Verification for Extreme Value Distributions with an Application to Probabilistic Peak Wind Prediction.” Environmetrics 23: 579–94.
Gneiting, T, and T L Thorarinsdottir. 2010. “Predicting Inflation: Professional Experts Versus No-Change Forecasts.” ArXiv Preprint ArXiv:1010.2318.
Gneiting, T, K Larson, K Westrick, M G Genton, and E Aldrich. 2006. “Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching Space–time Method.” Journal of the American Statistical Association 101: 968–79.
Gneiting, T, A E Raftery, A H Westveld III, and T Goldman. 2005. “Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation.” Monthly Weather Review 133: 1098–1118.
Grimit, E P, T Gneiting, V J Berrocal, and N A Johnson. 2006. “The Continuous Ranked Probability Score for Circular Variables and Its Application to Mesoscale Forecast Ensemble Verification.” Quarterly Journal of the Royal Meteorological Society 132: 2925–42.
Möller, D, and M Scheuerer. 2015. “Probabilistic Wind Speed Forecasting on a Grid Based on Ensemble Model Output Statistics.” Annals of Applied Statistics 9: 1328–49.
Taillardat, M, O Mestre, M Zamo, and P Naveau. 2016. “Calibrated Ensemble Forecasts Using Quantile Regression Forests and Ensemble Model Output Statistics.” Monthly Weather Review 144: 2375–93.
Thorarinsdottir, T L, and T Gneiting. 2010. “Probabilistic Forecasts of Wind Speed: Ensemble Model Output Statistics by Using Heteroscedastic Censored Regression.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 173: 371–88.
Wei, W, and L Held. 2014. “Calibration Tests for Count Data.” TEST 23: 787–805.