Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for easy plotting of multichannel sequence data and hidden Markov models. Models are estimated using maximum likelihood via the EM algorithm and/or direct numerical maximization with analytical gradients. All main algorithms are written in C++ with support for parallel computation.
Version: | 1.0.8 |
Depends: | R (≥ 3.2.0) |
Imports: | gridBase, igraph, Matrix, nloptr, numDeriv, Rcpp (≥ 0.11.3), TraMineR (≥ 1.8-8), graphics, grDevices, grid, methods, stats, utils |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | MASS, nnet, knitr |
Published: | 2017-11-08 |
Author: | Jouni Helske, Satu Helske |
Maintainer: | Jouni Helske <jouni.helske at iki.fi> |
BugReports: | https://github.com/helske/seqHMM/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | yes |
SystemRequirements: | C++11 |
Citation: | seqHMM citation info |
Materials: | NEWS |
CRAN checks: | seqHMM results |
Reference manual: | seqHMM.pdf |
Vignettes: |
Mixture Hidden Markov Models for Sequence Data: the seqHMM Package in R The main algorithms used in the seqHMM package Examples and tips for estimating Markovian models with seqHMM Visualization tools in the seqHMM package |
Package source: | seqHMM_1.0.8.tar.gz |
Windows binaries: | r-devel: seqHMM_1.0.8.zip, r-release: seqHMM_1.0.8.zip, r-oldrel: seqHMM_1.0.8.zip |
OS X El Capitan binaries: | r-release: seqHMM_1.0.8.tgz |
OS X Mavericks binaries: | r-oldrel: seqHMM_1.0.8.tgz |
Old sources: | seqHMM archive |
Please use the canonical form https://CRAN.R-project.org/package=seqHMM to link to this page.