Fast and memory-friendly tools for text vectorization, topic modeling (LDA, LSA), word embeddings (GloVe), similarities. This package provides a source-agnostic streaming API, which allows researchers to perform analysis of collections of documents which are larger than available RAM. All core functions are parallelized to benefit from multicore machines.
Version: | 0.5.1 |
Depends: | R (≥ 3.2.0), methods |
Imports: | Matrix (≥ 1.1), Rcpp (≥ 0.11), RcppParallel (≥ 4.3.14), digest (≥ 0.6.8), foreach (≥ 1.4.3), data.table (≥ 1.9.6), irlba (≥ 2.2.1), R6 (≥ 2.1.2), futile.logger (≥ 1.4.3), stringi (≥ 1.1.5), mlapi (≥ 0.1.0) |
LinkingTo: | Rcpp, RcppParallel, digest, sparsepp (≥ 0.2.0) |
Suggests: | doParallel, testthat, covr, knitr, rmarkdown, glmnet, parallel, tokenizers, magrittr |
Published: | 2018-01-11 |
Author: | Dmitriy Selivanov [aut, cre, cph], Qing Wang [aut, cph] (Author of the WaprLDA C++ code) |
Maintainer: | Dmitriy Selivanov <selivanov.dmitriy at gmail.com> |
BugReports: | https://github.com/dselivanov/text2vec/issues |
License: | GPL-2 | GPL-3 | file LICENSE [expanded from: GPL (≥ 2) | file LICENSE] |
URL: | http://text2vec.org |
NeedsCompilation: | yes |
SystemRequirements: | GNU make, C++11 |
Materials: | README NEWS |
In views: | NaturalLanguageProcessing |
CRAN checks: | text2vec results |
Reference manual: | text2vec.pdf |
Vignettes: |
Advanced topics GloVe Word Embeddings Analyzing Texts with the text2vec Package |
Package source: | text2vec_0.5.1.tar.gz |
Windows binaries: | r-devel: text2vec_0.5.1.zip, r-release: text2vec_0.5.1.zip, r-oldrel: text2vec_0.5.1.zip |
OS X El Capitan binaries: | r-release: text2vec_0.5.1.tgz |
OS X Mavericks binaries: | r-oldrel: text2vec_0.5.0.tgz |
Old sources: | text2vec archive |
Reverse imports: | textmineR |
Reverse suggests: | lime |
Please use the canonical form https://CRAN.R-project.org/package=text2vec to link to this page.